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Structures comprising metallic or semiconductor nanoparticles
and organic compountiBave potential applications in a diverse
range of technologically significant fields. Invariably the use of
nanoparticles stems from the ability to selectively tune the
electrical and optical properties they exhibit through control of
parameters such as their composition and the particle size and
shapet Additionally, a large percentage of the atoms comprising
a nanoparticle reside at the surface, consequently many of the
optical, transport, and thermodynamic properties of these materials - - po—ea e
are also surface relatédThe modification of nanoparticle 0 1.00 4.00
properties by adsorbed surfactants and organic molecules is bn
therefore of great interest. However, little is known about the Figure 1. AFM image of a composite gold nanoparticle/DODAC
structure of surfactants at nanoparticle surfaces, primarily due to surfactant film formed at the air/water interface (1.002MODAC
the fact that few of the available techniques are capable of molecule) and deposited on a silicon wafer substrate.
extrapolation to nanometer length scale substfatddere we
show that the nonlinear optical technique of Sum Frequency 1) with the film height being determined as #43 nm. This is
Spectroscopy(SFS) may be applied to the nanoparticle/surfactant in extremely good agreement with the average diameter of the
interface by recording the first spectrum of a surfactant adsorbed gold nanoparticles as measured by TEM. The AFM image shows
on a nanoparticle surface. that two-dimensional lateral aggregation of the nanoparticles

A composite nanoparticle/surfactant film was formed at the occurred, as may be expected since the cationic surfactant
air/water interface of a Langmuir trough containing an aqueous neutralizes the stabilizing citrate charge on the nanoparticles when
solution of monodisperse gold nanoparticles previously preparedthey diffuse to the surface. The density of the nanoparticle films
by the standard technique of citrate reduction of HALRC? was found to be almost independent of the average surface area/
Transmission electron micrographs (TEM’s) of nanoparticles DODAC molecule used to form the film at the air/water interface.
isolated by evaporation of the aqueous solution showed that theyThis result is not surprising given that the surfactant occupies a
had an average diameter of #52 nm. A film of the dichain negligible area at the air/water interface in comparison to that
surfactant dioctadecyldimethylammonium chloride (DODAC) was occupied by the nanoparticle, implying that each nanoparticle has
spread from chloroform on the surface of the aqueous nanoparticlehundreds of DODAC molecules adsorbed even at low compres-
solution, compressed to the desired area after solvent evaporationsions of the surfactant monolayer.
and left to react for 24 h. Due to its extremely low aqueous  Sum frequency spectra of the films were recorded in the methyl/
solubility a chloroform solution of DODAC readily spreads at methylene G-H stretching region (28063000 cnT?) using a
the air/water interface without any significant solubilization of nanosecond laser spectrometer. The SF spectrum of a DODAC
the surfactant. Hence interactions between the anionically Stabi-mon0|ayer deposited on a silicon substrate from a surface densi’[y
lized gold nanoparticles and the cationic surfactant occur primarily of 0.40 nn#molecule is shown in Figure 2a. In accordance with
at the air/water interface with little bulk interaction and consequent well-characterized surfactant behavior the DODAC molecules are
precipitation of macroscopic nanoparticle aggregates. The hybrid expected to be orientated with their cationic headgroups toward
nanoparticle/surfactant film was deposited on a silicon wafer by the silicon substrate. The strong resonances at 2960, 2935, and
drawing it, at an approximately horizontal angle, through the 2875 cnv? arise from the terminal methyl groups of the surfactant
nanoparticle/DODAC/air interface. Kinetic experiments indicated a|ky| chains. Additiona”y, weak methy|ene stretching modes are
that film formation was complete after 24 h. observed at2910 and 2860 crt; their presence was confirmed

The morphology of the composite nanoparticle/surfactant film by modeling the spectra. SF generation does not arise from
was studied by Atomic Force Microscopy (AFM). A single layer molecules in a centrosymmetric or isotropic environment. Hence
of nanoparticles was found to be present on the substrate (Figurethe dominance of the methyl over the methylene resonances
implies that the DODAC surfactant monolayer is well ordered
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visible and infrared electromagnetic fields generated at the
surfaces when using nanoparticle rather than silicon substrates.
The electromagnetic field strengths influence not only the
magnitude of the background SF signal but also the relative
importance of the individual tensor components of the resonant
b second-order nonlinear susceptibilitiegs®’s) and hence the
strengths of each resonance. It is interesting to speculate on the
consequences of changes in these fields between silicon, gold
nanoparticle, and evaporated gold substrates. Silicon is a poor
reflector in the infrared and consequently the surface E-field
established perpendicular to the surfazeXis) is small. Con-
. . : ; 8 versely, the infrared reflectivity of gold is high and increases to
2800 2850 2900 2950 3000 nearly 100% at thicknesses of the order of hundreds of nanom-
Wavenumber/em’™ eters. If the na_n_oparticle film is_ considered to be a very thin gold
) ) T o layer on the silicon substrate it follows that the surface infrared
_Flgure 2. SF spectrum in PPP polarization (sum frgquency, V|s_|_ble, E-field produced will have a largercomponent than would be
infrared beams) of (a) a DODAC monolayer deposited on a silicon 1 -osent on bare silicon, but smaller than that which would exist
substrate from a 0.40 MDODAC molecule layer at the airfwater on thick gold. The absolute and relative intensity of individual

interface and (b) a composite gold nanoparticle/DODAC film formed at
the air/water interface (0.40 FfDODAC molecule) and deposited on a resonances WOl.Jld ther_efore be _expe_:cted to (;iepend on the degree
cpf interaction with the infrared field in the axis.

silicon substrate. To enable comparison spectrum b has been normalize ) o
to spectrum a through division by a factor of 4.8. The spectra are displaced A second potential effect arising from the presence of nano-
for clarity. The solid circles are the individual data points and the solid pParticles in the film is the nature of the surface plasmon resonance

lines are theoretical fits to the data. of the system. Silicon has negligible surface plasmon resonance
and no enhancement of the surface E-fields is expected by this
in spectrum b than a in Figure 2. There are other significant Mechanism. In contrast, bulk gold exhibits strong nonwavelength-
differences between the spectra. First, the peak positions of thesPecific surface plasmon resonance which results in enhancement
methyl resonances are blue shifted by approximately 6cm  Of thez-axis surface E-field. Unlike bulk gold the surface plasmon
Second, the weak methylene resonances are greatly diminishedf€sonance of gold nanoparticles is wavelength specific and for
if present at all, in the spectrum of the nanoparticle/DODAC film. 15 nm diameter nanoparticles is a maximumiat 530 nm,
The SF spectrum in Figure 2b was comparable to that of the film coinciding with the wavelength of the visible laser beam.
recorded in situ at the air/water interface. These observations leadConsequently the visible surface E-field will have an enhanced
to the conclusion that spectrum b in Figure 2 is predominantly intensity in comparison to silicon and like all surface plasmon
that of the surfactant adsorbed at the nanoparticle surface. fields will contain only azcomponent. Preferential enhancement
One possible source of the significant differences that are Of resonances with significaatcomponents would therefore be
observed between the SF spectra of a DODAC monolayer and aéxpected. Experiments to determine the relative importance of
nanoparticle/DODAC film is variation in the average orientation €ach of these two effects are presently being performed. Specif-
of the surfactant due to the substrate morphology. To investigateically, the nanoparticle size (and hence thg of surface plasmon
whether the differences in spectra a and b of Figure 2 can beabsorption) is being varied, and a systematic study of the effect
attributed to variation in surfactant orientation a system of Of the possible beam polarization combinations is being made.
DODAC coated gold nanoparticles deposited on a microns-thick In summary we have for the first time measured a sum
evaporated gold substrate was prepared. The orientation offrequency vibrational spectrum originating from surfactant mol-
DODAC surfactant in this system is identical with that of the ecules at the nanoparticle/surfactant interface. While further work
gold nanoparticle/DODAC film system with silicon employed as is required to fully understand the nature of SF generation on
the substrate. The SF spectrum recorded is markedly differentnanoparticle substrates, the potential now undoubtedly exists to
from that of Figure 2b and closely resembles that of a DODAC determine the polar orientation and degree of conformational order
monolayer adsorbed on evaporated gold. Hence variation in theof adsorbed surfactants.
average molecular orientation of the surfactant may be eliminated
as the source of the differences between spectra a and b in Figure Acknowledgment. We thank Mr. R. McAloney for the AFM images
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